产品中心

Product Center

什么是光纤传感器?

软件界面

  对光纤光栅进行特殊封装,这样就是简单的光纤传感器。由于FBG对温度,应力,湿度等都较为敏感,所以能通过特殊的封装手段做成对应的传感器。

  光纤传感技术利用光在光纤中传播时的物理特性来检测温度、声音、振动和应变的变化。光纤传感器是一种把被测量的状态转变为可测的光信号的装置,由放大器(控制中心)及光纤构成。光纤传感技术的优点是成本低,光纤和外部传感器之间不需要离散接口。

  在点传感器中,每个传感器都是离散的,必须单独回程,因此点传感器适用于较短长度的部署,同时基于光纤布拉格光栅(FBG)点传感器可以在具有高分辨率和灵敏度的FBG的特定位置测量参数。

  准分布式传感器使用多个嵌入光纤的FBG,通过修改光纤芯的折射率,使得某些波长的光能够通过,而其他波长的光反射回光源。每个FBG都可以反射特定的波长,从而使每个FBG都可以沿光纤路径识别。准分布式传感在整个光缆上并不敏感,但是在各个局部点极为敏感。

  分布式光纤传感器(DFOS)是一种能够沿整条光纤光缆进行连续测量的技术,它具有以下特点:传感元件、仅针对光纤、灵敏度高、抗电磁干扰以及测量范围大。DFOS应用类型包括分布式温度传感(DTS)、分布式声学传感(DAS)和分布式应变传感(DSS)。DTS是将光纤本身作为传感原件来测量整条光纤光缆的温度分布,DTS代表的是一种在长距离内获得准确和高分辨率温度测量的经济有效的办法。DAS使用光纤来检测声学振动。DSS是沿光纤传感器光缆提供空间分辨率的延长率曲线,通过在资产横截面的不同位置组合多条传感器光缆,DSS用于计算资产(被测设备)的延长率(应变)、形状(弯曲半径和弯曲方向)、扭曲度等。

  光纤传感器的原理是光在光纤中传播时遇到不均匀介质会被散射,一部分的散射光会返回发射点从而被发射点的分析仪接收。这些返回的光会发生相位偏移等变化,分析仪通过分析这些变化就可以分析出光纤所测量的应变、温度、声音等。

  在OTDR原理中,固态或半导体激光器产生激光脉冲并发送到光纤中,通过分析反向散射光以进行温度监控,从反向散射光返回检测单元的时间起,就可以定位温度发生变化的位置。

  OFDR原理提供了有关局部温度特征的信息,仅当信号在频率函数中反向散射时,此信息才可用,同时该原则允许有效利用可用带宽,此外它还可以在光纤中以最大更新速率实现分布式传感。

  拉曼散射效应适用于DTS,该效应在频率和能量上与入射辐射的频率和能量有一定差异,差异的变化量取决于分子散射能量和弛豫时在分子中获得或损失的能量。

  光子与光纤内的粒子接触后随机散射的现象称为瑞利散射效应,瑞利散射效应用于DAS。

  布里渊散射效应描述了电磁场(光子)与光纤特征密度变化的相互作用,布里渊散射用于DSS。DSS与布里渊散射分析仪结合,其频率变化与应变变化为线性关系,比较方便读取,可以监测堤坝水位、水位变化,防止堤坝渗水。

  光纤布拉格光栅(FBG)是光纤芯内的微结构,包括对底层玻璃材料的折射率进行周期性调制,如果核心内引导的宽带光照射到这个周期性微结构上,一个特定的波长会被反射,而其他所有的引导宽带光都可以不受阻碍地通过,FBG具有作为应变和温度传感器的独特特性。

  光纤传感器光缆可用于数据传输、温度测量、声音、振动和应变。光纤传感器光缆可用于单模(SM)和多模(MM)光纤或者两者的组合。对于MM光纤,选择直径为50µm或62.5µm的纤芯,与SM光纤相比这会使得更多的光在纤芯中传播。目前,在大多数情况下50µm纤芯优于62.5µm,并且已成为MM光纤的既定标准。除此之外,MM纤维的横截面具有渐变指数(GI),这意味着折射率在包层和纤芯之间的过度是逐渐的,这与阶跃折射率光纤相反。在突变光纤中折射率从纤芯到包层急剧下降(主要用于SM光纤)。SM光纤的纤芯直径为9µm,通过只允许光以一种模式传播将模式色散最小化。MM光纤用于DTS,SM光纤用于DAS。光纤传感器光缆的主要特点是能够对事件、温度、应变、振动和声学测量进行精确定位,不受电磁干扰(EMI)的影响,适用于爆炸性危险区域,以及小型、灵活且纯被动传感器元件。

  光纤传感器有多个优点,包括高抗干扰性、长期稳定性、耐用性、轻巧紧凑的外形、本质安全、低成本、实时且多点报警报告、易于部署、无需维护以及宽带宽,并且光纤传感广泛运用于不同领域。

  光纤是一种由玻璃或塑料制成的纤维,可作为光传导工具。光纤是由两层折射率不同的玻璃组成。内层为光内芯,直径在几微米至几十微米,外层的直径0.1~0.2mm。一般内芯玻璃的折射率比外层玻璃大1%。根据光的折射和全反射原理,当光线射到内芯和外层界面的角度大于产生全反射的临界角时,光线透不过界面,全部反射。

  从技术层面上讲,模式是光纤的稳定传播状态。深入研究传输模式理论,你会发现这是一种由光的波动性质引起的效应。简单地说,可以认为,一个模式是一条光线,或光纤中的路径

  按传输模式分为多模光纤和单模光纤,多模光纤按照折射率分布又可分为阶跃型和渐变型,阶跃型光纤一般较渐变型光纤的带宽低。

  光纤的纤芯折射率高于包层折射率,使得输入的光能在纤芯一包层交界面上不断产生全反射而前进。这种光纤纤芯的折射率是均匀的,包层的折射率稍低一些。光纤中心芯到玻璃包层的折射率是突变的,只有一个台阶。

  又名梯度型折射率多模光纤,光纤折射率中心最高,沿径向递减,光束在光纤中传播,可以自动聚焦而不发生色散。多模渐变折射率光纤纤芯中的折射率是连续变化的,它随纤芯半径r的增加按一定的规律减小。由于纤芯的折射率不均匀,光射线的轨迹不再是直线) 单模光纤

  将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,称为被调制的信号光,再利用被测量对光的传输特性施加的影响,完成测量。

  与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,有一系列独特的优点:

  铁路(振动监控、定位)、矿业、医疗行业、风电行业、石油石化行业等,其主要产品包括:(1) 多轴光纤加速度计

  用于测量高压环境或潜在爆炸性环境中的振动和运动。典型应用包括受电弓监测、风力涡轮机叶片、MRI、变压器、发电机、采矿以及石油和天然气。

  温度测定基于拉曼效应,从而确定沿玻璃纤维的温度分布。通过使用极短的光脉冲,可实现约100mm的空间分辨率,测量光纤的最大长度为250m。

  包含光纤增量编码器(常用于检测电机轴或线性驱动器的运动和速度);光纤绝对旋转编码器(用于确定轴位置);线性传感器(以高分辨率记录几米的纯被动线)光纤信号设备

  包括光纤微动开关、紧急停止开关。在大电流附近进行安全信号检测,,旨在满足 MRI、医疗和工业应用的挑战性要求。

  光纤传感器有着发射电路和接收电路,大多数光纤传感器使用红外线作为光源,使用光纤导光,发出的微弱光信号受到弱小物体的影响后,光的强度、波长、频率、相位、偏振态等就会发生变化,反射回的光信号经过光纤送回光电器件、经过解调器放大处理后就可以获得被检测的参数。

  因为发出和返回的光信号都能够最终靠光纤传递,而光纤比较细小,可以弯折,安装就非常灵活,可以安装在适当的位置去检测非常细小的物体。

  光纤传感器是20世纪70年代中期发展起来的一种基于光导纤维的新型传感器。它是光纤和光通技术快速地发展的产物,它与以电为基础的传感器有本质区别。

  4、石英玻璃光纤具有耐腐蚀的特性,可制成应用于高温环境的漫反射或对射检测产品。

  ♥嘉准可按客户的需求,订制各款狭窄拥挤的空间安装的,高温环境,有腐蚀性气体等特殊场合使用的高精度的光纤管和光纤传感器。

  嘉准不同光纤管搭配放大器使用,光纤传感器是一种放大器分离型的光电传感器。

  • 在线客服
  • 联系电话
    181-1877-6570
  • 二维码

    扫一扫
    加好友