产品中心

Product Center

Nat Commun:光纤传感器应用于锂离子电池原位监测以实现热失控早期预警

软件界面

  锂离子电池热失控早期预警是全球性科学难题。为攻克这一难题,暨南大学郭团教授团队联合中国科学技术大学火灾科学国家重点实验室王青松研究员团队,提出了一种可植入电池里面的多模态集成光纤原位监测技术,在国际上率先实现了对商业化锂电池热失控全过程的精准分析与提早预警。

  该联合团队设计并成功研制出可在1000℃的高温度高压力环境下正常工作的多模态集成光纤传感器,实现了对电池热失控全过程内部温度和压力的同步精准测量,攻克了热失控极端环境下温度与压力信号相互串扰的难题,提出解耦电池产热和气压变化速率的新方法,首次发现了触发电池热失控链式反应的特征拐点与共性规律,实现了对电池里面微观“不可逆反应”的精准判别,为快速切断电池热失控链式反应、保障电池在安全区间运行提供了重要手段。

  随着“双碳”目标的深入推进,锂离子电池在从化石燃料到可再次生产的能源的持续转型中发挥着越来越为关键的作用。然而,近年来锂电池热失控引发的火灾安全事故极大地阻碍了其在电动汽车和储能领域的规模化应用,热失控问题为电池整个产业链敲响了安全的警钟。因此深入理解锂电池热失控演变机制,对于早期热失控预警、防止火灾爆炸事故发生具备极其重大指导作用。

  然而,现有的锂电池热失控监测手段完全依赖于响应滞后的外部电、热、声、气等信号,难以实时精确捕捉热失控过程电池里面温度和产热的快速变化,从而阻碍了对热失控过程的深入理解及预警信号的准确判定。因此,迫切地需要发展一种适用于锂电池热失控提早预警的电池原位安全检测新技术。

  图1所示为集成了光纤布拉格光栅(FBG)和开腔法布里珀罗干涉仪(FPI)的多功能光纤传感器,可实现电池里面温度和压力的同步监测。FBG反射光谱的中心波长与纤芯折射率和光栅周期成正比,而气温变化会通过弹光效应和热光效应改变纤芯折射率和光栅周期,进一步造成反射光谱中心波长的偏移,因此通过中心波长偏移可解调得到气温变化。而外界压力变化会通过改变FPI开放腔内的气体折射率造成干涉光谱波长的变化,因此通过干涉光谱波长偏移可解调实现压力测量。

  图2a-d为FBG-FPI集成光纤传感器的温度、压力校准测试,从图2a和2b中不难发现FBG中心波长与气温变化表现出高度线d中,FPI波长与压力线;更重要的是,FBG和FPI传感器分别对压力和气温变化不敏感,这在某种程度上预示着FBG和FPI传感器均对单一参量(温度或压力)敏感,以此来实现温度和压力的精确测量。随后,在18650电池负极中心位置开孔并植入多功能光纤传感器,进而评估了电池在植入传感器后的倍率性能和循环性能,发现电池性能并没有受到植入传感器的影响,见图2e,f。

  如图3显示了100%SOC、50%SOC和0%SOC三种不同荷电状态的电池热失控过程中内部温度和压力的演化规律。通过与电池大小相同的圆柱形加热棒触发电池热失控,得到了电池在热滥用条件下的热失控行为。通过图3a,c,e能够准确的看出内部压力在整个加热过程出现两个峰值,分别对应于安全阀开启和热失控发生过程,对于0%SOC电池而言,未发生热失控,则相应地没再次出现第二个压力峰值。

  从图3a,c,e中的局部放大图可发现有趣的现象:电压掉落表示电池内短路的发生,此时由于内部焦耳热的瞬间释放,内部温度出现约20 ℃的阶跃跳变,而表面温度则由于滞后性表现出较小或可忽略不计的温度阶跃,这表明通过电池里面温度的阶跃变化能预测内短路的发生。

  此外,100%SOC电池在热失控过程中内部最高温度达509.8 ℃,而由于热失控瞬间内部热量难以扩散,外部温度仅有328.8 ℃,温差高达180 ℃,这些结果都表明通过外部温度监测热失控过程存在严重的滞后性和局限性。

  传统的热失控预警依赖于安全阀开启后的产气行为,以及内短路引起的电压掉落,然而当观测到这些信号时,电池里面已发生了不可逆化学变化。因此本文旨在电池发生不可逆化学变化之前进行早期预警,可保证电池后续正常工作。

  为了进一步分析电池安全阀开启之前的热失控预警信号,对图4a内部温度和压力曲线对时间进行微分运算,得到图4b温度和压力随时间的变化率。从图4b中的局部放大图不难发现,内部温度和压力上升速率存在两个阶段:阶段①,温升速率增长而压力变化速率保持稳定;阶段②,温升速率保持稳定而压力变化速率开始增长。

  进一步提取温度和压力变化速率得到了图4c-e,由于温升速率和压力变化率的相反趋势,二者组成了一个“菱形区间”,菱形区间的转折点被设定为预警起始点。

  图4f给出了温度和压力变化率背后蕴含的反应机制,在阶段①,气温变化占主导地位,常温电池受到高温加热棒的热传导而导致电池温升速率逐渐升高。在阶段②,压力变化占主导地位,经过前期的快速温升,电池温度的升高一方面导致压力的增大,另一方面导致电解液开始蒸发(进一步造成压力增大),因此导致压力变化率增大,此时电池仍处于可逆的物理变化阶段;随着电池里面温度和压力的进一步增加,SEI膜开始分解,此时电池已发生不可逆化学变化。因此设定预警区间始于电解液蒸发(菱形区间转折点)、止于SEI膜分解,此时电池温度为70~80 °C。且通过图4c-e能够准确的看出该预警区间不受SOC的影响,具有普适性,可作为一种通用的电池热失控预警信号。

  本文创新性地研发出FBG-FPI多功能集成光纤传感器,在不干扰电池运行的情况下对商用锂离子电池热失控过程中的内部温度和压力进行了原位、实时、高精度监测。并且精确量化了电池热失控与光信号之间稳定且可重复的关联性。图5总结了电池热失控过程中内部温度-压力演变规律与内部复杂热失控反应的相关性,经历了电解液蒸发、SEI膜分解、隔膜融化、内短路、安全阀开启、电极/电解液链式系列反应。通过确定温度和压力微分曲线的“菱形”区域,我们提出了基于识别电池里面可逆与不可逆反应转换的热失控早期预警方案,可保障电池的安全使用。

  在未来,鉴于光纤传感器尺寸小、具有抗电磁干扰性和远程操作能力,适合大规模生产的标准制造工艺,且能轻松实现一根光纤在电池的多个位置同时监测包括温度、压力、折射率、气体和离子浓度在内的多种关键参数。光纤传感技术与电池的结合将会在新能源汽车、储能电站安全检测等领域发挥重要作用。

  通讯作者郭团:暨南大学教授,博士生导师,国际IEEE仪器与测量学会光子技术委员会主席,国家优秀青年科学基金获得者,广东省科学技术创新领军人才。从事光纤传感、生物光子学、能源光子学等领域研究。主持国家自然科学基金(重点、优青等5项)及省部级科研项目20余项。在Nat. Commun.(4篇)、Light Sci. Appl.(3篇)、Adv. Opt. Photonics、Energ Environ Sci 等期刊发表SCI论文140余篇,论文总他引6100余次,撰写特邀综述论文9篇,参编Springer著作3部,获授权中国、美国、PCT发明专利20余项。担任期刊IEEE Journal of Lightwave Technology和SCIENCE CHINA Information Sciences编委,荣获IEEE仪器与测量学会颁发的2018年度科技奖和2022年度最佳应用奖。

  通讯作者王青松:中国科学技术大学研究员,博导,英国皇家化学会会士、英国工程技术学会会士。入选爱思唯尔中国高被引学者、欧盟玛丽居里学者、教育部新世纪人才计划、中科院青促会及优秀会员、安徽省“特支计划”创新领军人才。主要是做锂离子电池安全方面的研究,主持国家重点研发计划项目等30余项。近年来在Nature Communations、Progress in Energy and Combustion Science、Advanced Energy Materials、Energy Storage Materials、Nano Energy、Applied Energy、Journal of Hazardous Materials等期刊发表SCI论文200余篇。授权发明专利30余件,主/参编标准10余项。获储能年度人物奖、公共安全科学技术学会科学技术进步奖一等奖、侯德榜化工科学技术创新奖、中国消防协会科学技术创新奖一等奖等奖励。

  • 在线客服
  • 联系电话
    181-1877-6570
  • 二维码

    扫一扫
    加好友